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A linear analysis of the free oscillations of captive drops or bubbles is discussed. The 
drop is surrounded by an immiscible liquid or gas and undergoes rotation as a rigid 
body in the presence of gravity. Using spectral analytical methods, we provide a 
general formulation for both elliptic and hyperbolic oscillation regimes of the 
frequency spectrum, for any combination of the Weber and Bond numbers. The 
method uses a Green function to  reduce the inviscid Navier-Stokes equations and 
boundary conditions to an eigenvalue problem. Both the Green function and normal 
velocities at the interface are expanded in the orthogonal functional space generated 
by the Sturm-Liouville problem associated to the interface equation. The effect on 
the vibration modes of the density and geometrical parameters of the captive drop 
and surrounding medium is analysed. We present a complete analysis of the low- 
frequency spectra in the elliptic regime of a set of floating liquid zones and captive 
drops for a continuous range of Weber and Bond numbers. It is shown that, 
depending on the geometrical parameters of the system, the elliptic vibration 
spectrum presents a sui generis modal interaction for low wavenumbers and certain 
ranges of Weber number. 

1. Introduction 
Since the pioneering contributions of Laplace, Young and Poisson to the 

mathematical formulation of the equilibrium configurations of liquid menisci and the 
early experimental work of Plateau, capillary fluid mechanics has undergone an 
intense study and development. 

Owing to  the simplicity of the governing equations, the stability limits and free 
vibrations for simple geometries (spherical, cylindrical, or flat equilibrium shapes) 
were the first issues under study. An excellent and thorough review of the literature 
on this field can be found in Myshkis et al. (1987). These early studies involved a 
linearization of both the equation of the free surface given by the balance of 
dynamical pressures, and the equations of motion of the fluids. Thus, after the 
appropriate choice of coordinates, the equation of the perturbation of the interface, 
which in turn determines the complexity of the problem, can be analytically solved. 
However, although many mechanical features of capillary menisci came to light, the 
assumptions made in dealing with these simple geometries were quite restrictive. 

For many axisymmetric equilibrium configurations, the effect of the presence of 
mass forces such as gravitational (Pitts 1974, 1976), isorotational (Brown & Scriven 
1980a, b )  or electromagnetic fields (Basaran & Scriven 1989; Gonzalez et al. 1989) as 
well as thermal effects (Busse 1984; Chifu et al. 1983) have also been investigated in 
the linear stability regime for both single and compound drops, either isolated or 
captive. However, the presence of these body forces was investigated only in the  
cases when they could be treated as small perturbations, or in such a way that they 
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do not affect the simplicity of the equilibrium shape. Therefore, they appear as an 
additional term in the equation of the interface perturbation. 

Hence, the solution of a more general approach to the linear dynamics of captive 
liquid menisci is still under discussion. Several studies have been recently presented 
for simple geometries (spherical, Strani & Sabetta 1984, 1988; and cylindrical, Sanz 
1985; Sanz & L6pez Diez 1989) in the absence of mass forces such as rotation or 
gravity. The application of numerical techniques to integrate the general boundary 
problem for non-trivial shapes provides an essential tool for the comprehension and 
quantification of the effects of several mass forces. 

In  this paper, we analyse the inviscid free vibrations of axisymmetric floating 
liquid zones (liquid bridges) and pendent or sessile drops or bubbles surrounded by 
an immiscible incompressible fluid under the combined influence of both gravi- 
tational and isorotational (the drop and its surroundings are assumed to be rotating 
as a rigid body) fields. 

The analytical method to be used is based on the Sturm-Liouville structure of the 
second-order linear differential equation which governs the normal small dis- 
turbances of the interface (GafiQn & Barrero 1986). This differential equation is 
defined in a curvilinear coordinate system (Boucher & Evans 1975) along a meridian 
of the axisymmetric equilibrium profile. The homogeneous part of this equation is 
written as a second-order differential operator which defines a Hilbert functional 
space. The corresponding integral operator is defined using Green’s theorem (Butkov 
1968) and the Hilbert space. Therefore, the normal perturbation of the interface can 
be explicitly written. Equating the normal perturbation to the normal velocities on 
the interface and making use of the equation for the normal disturbances and the 
linearized Navier-Stokes equations for the inviscid motion, one obtains an explicit 
expression for the dynamical pressures on the interface and its derivatives. Finally, 
the problem is formulated as a classical Neumann-type boundary problem for the 
dynamic pressure, which can be solved by several techniques (spectral methods, 
Green function methods, finite differences, etc.). 

Regardless of the complexity of the equilibrium shape, the method introduced by 
GaiiQn & Barrero (1986) possesses great generality since it yields the solution of the 
free oscillations of the meniscus under study for arbitrary combinations of the Bond 
and Weber numbers (B and W respectively). Using a similar approach, Myshkis et al. 
(1987) obtained some numerical results for menisci formed by an isorotating liquid 
partially filling a cylindrical vessel in the absence of gravity. Myshkis’ results have 
shown many of the essential features of the oscillation frequency spectra of 
isorotating liquid axisymmetric menisci. I n  particular, their results showed the 
splitting of the spectrum into two sets, one corresponding to an elliptical regime and 
the other to a hyperbolic one. However, a deeper study on the gyroscopic effects on 
the elliptical frequency spectrum of rotating liquid menisci under thc influence of a 
gravitational field still remains to be done. Here, using separation of variables (a 
well-known form of the Ritz method), we report some general results for rotating 
captive drops in the absence of gravity as well as an analysis of the elliptic spectrum 
of two typical rotating liquid bridges under the influence of gravity. We have chosen 
this method for two reasons: ( a )  it is capable of dealing with most of the stable 
equilibrium shapes, allowing us to analysc the basic effects of the boundary 
conditions, geometries of support and vessel, etc. and ( b )  for a given accuracy, it is 
one or two orders of magnitude faster than other numerical schemes. The limits of 
convergence of this method are sharp and can be marked out as a function of the 
Bond and Weber numbers. This study will be given elsewhere. Here we present some 
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FIGURE 1. (a) Liquid bridge, ( b )  pendant and (c) sessile drop configurations. 

new effects of the gyroscopic forces and a somewhat general description of how the 
rotation affccts the frequency spectrum, depending on the boundary condit,ions and 
the difference of the densities of the inner and outer fluids. 

However, there are limitations in the use of the separation of variables for the case 
of some extrcmc captive drops configurations (i.e. slender, pendant drops or very flat, 
overflowing, sessile drops), due to  the lack of convergence of the method for these 
configurations. Consequently, a numerical scheme more independent of the 
geometrical constraints such as those based on the Green methods (e.g. boundary- 
elements mcthod) has to be applied. Some results using a boundary-element method 
are presented in Gaiian & Barrero (l990), and more general results applying this 
method will be presented elsewhere. 

In $ 2  we write the equations and boundary conditions of the linear problem under 
consideration. A detailed description of the method of solving the dynamical problem 
is given in $3, and the derivation of a dispersion relation is discussed in $4, where the 
method of separation of variables is applied. Numerical results on the limits of 
convergence are presented in $5,  and a discussion of the results is given in $6. 

2. Formulation of the problem 
Let us consider the small-amplitude free vibrations of a liquid captive drop or 

bubble which forms an axisymmetric system together with its surrounding medium 
and cylindrical container (figure 1) .  The liquid or gas volume I/' may be held between 
two parallel, coaxial disks (liquid bridge configuration), or be in contact with a single 
coaxial support (pendant or sessile drop configurations). The non-dimensional 
Navier-Stokes equations for the inviscid motion of both inner and outer 
incompressible fluids read 

v-vj = 0, (1) 

where superscriptj = 0, i refers to  outer or inner fluid respectively. The whole system 
is assumed to be rotating as a rigid body, and the drop dynamics is then described 
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in a coordinate system solidly rotating with both inner and outer fluids. In what 
follows we will use cylindrical coordinates x ( r , p ,  2 ) .  The acceleration due to gravity 
g and the rotation constant speed iik are taken along the z-axis. Only positive 
rotation speeds are considered since, owing to the symmetry, no additional results 
can arise for negative rotation. All variables in ( l ) ,  (2) and figure 1 have been non- 
dimensionalized using a refcrence density p" = p"' + p ,  a characteristic length &, which 
is either the bottom radius for bzidges or the support radius for drops, and a 
characteristic time t, = ( p " @ j ~ - ~ ) ; ,  where g and are surface tension and dimen- 
sional density respectively. Thc Bond and Weber numbers are defined as 
B = g(p'-p"") 2;u-l and W = d2((p' -p"")&a-l respectively. 

We assume that the ratio between viscous and inertial forces is very small : 

so that 

In this limit, a small amount of the oscillation energy is dissipated in thin boundary 
layers of thickness 

6 - (u"@ cr-yf < R,, 
existing a t  solid surfaces and fluid interfaces. Consequently, a second-order damping 
effect is expected to take place when oscillation goes on for a long time compared 
with the inverse of the frequency. Our analysis represents the first-order 
approximation to the dynamics of captive drops of liquids of very low viscosity (e.g. 
water, water-based solutions, most melted metals and minerals, many organic 
liquids, blood, etc.). Studies of the errors for the inviscid limit can be found, for 
spherical free drops, in Miller & Scriven (1968), and for spherical captive drops, in 
Strani & Sabetta (1988). 

Equations (1)  and (2) must be solved subject to the following boundary conditions : 
(i) The normal component of the velocity must be continuous across the interface 

and vanish on the solid surfaces. 
(ii) The interfacial surface behaves as a fluid surface, i.e. if the interface is 

described using a function f ( r ,  v, z ,  t )  = F(9, z ,  t )  - r being equal to zero a t  the surface, 
it must satisfy the equation 

Df= % f + u * - ~ f  = 0. 
Dt at (3) 

(iii) The pressure jump across the interface is balanced only by surface tension: 

pi-po = V . n ,  (4) 
n being the outward unit normal on the interface. 

System (1)-(2) and conditions (i)-(iv) form a boundary problem whose solution 
determines the interface position as a function of the space coordinates and time. 

To analyse the small free oscillations of the system we use the classical normal 
mode decomposition and, consequently, expand the solution as a small perturbation 
from the equilibrium (Lamb 1932; Raylcigh 1945; Greenspan 1968; Myshkis et al. 
1987, etc.): 

(iv) The liquid volume V of the bridge or captive drop is kept constant. 

m o o  

F(~,z,t) = J ' e ( z ) +  C C v m , n ( Z )  ~ X P  [ i ( ~ - u m , n t ) I >  (5) 
m=--00 12-1 

a m  

#(T,pl>  2 7 4  = A(r> 2 )  + C c d e, n(r,  2 )  exp [ i ( T  -urn, R. t) l> (6) 
m--w 12-1 
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uL, n ( r ,  2) 

(7) 
3=0+ C vim,n(r,z) exp [ i (~-w, , . t ) I ,  

where F is the non-dimensional interface radius and subscript e refers to the 
axisymmetric equilibrium conditions. The perturbations quantities (qm, n 1  and 
I@ @,, ,J are much smaller than Fe and @:, respectively ; m stands for the aximuthal 
wavenumber and is the nth natural frequency of the system for a given m. If 
W =!= 0, it is worth mentioning that for a given m and n, + w . , , ~  (Myshkis et al. 
1987). Only the axisymmetric mode (m = 0) consists of an azimuthal standing wave. 
Nevertheless, when W = 0, it can be proved that = w - m , n  and one may add 
together a backward and a forward mode of the sample amplitude to obtain an 
azimuthal standing wave, giving rise, seemingly, to a ‘transverse ’ mode. 

Taking into account expansions (5)-(7), the first-order terms of system (1)-(2) and 
conditions (i)-(iv) constitute the well-known equilibrium problem that determines 
the captive drop equilibrium shape (Padday 1971 ; Boucher & Evans 1975, among 
many others). In what follows, subscripts r and z stand for a/& and a/& respectively. 
Furthermore, for simplicity, subscripts m, n are dropped in the notation. 

d m ,  n ( r ,  2) 
m - - a  -“ n-1 1 

The second-order problem gives the radial disturbance of the interface q : 

together with the disturbances in the pressure and velocity fields of both fluids 
(Greenspan 1968) : 

1 m2 
-(r@i),+(1-h2)qz--SP3 = 0, 
r r2 (9) 

where 

and 

i(h@l, - m@/r)  

r + 2Qu* 

i w d  = @ 

iwd = 

i w d  = @ 

52 = ( j j )  
252 A = - ,  
w 

Equations (8) and (9) and relations (10) must be solved subject to the conditions 

r(0)  = 0, q(H, )  = 0, (11)  
u* = 0 on solid surfaces r = const., 

and w* = 0 on solid surfaces z = const. 

The requirement of continuity of the normal velocity across the interface yields 

Finally, the constant-volume condition reads 

r r q F e  exp (imp) dzdp, = 0. 
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FIGURE 2. Intrinsic coordinate s along the equilibrium shape. The sketch shows the radial ~ ( z ) ,  
normal [(s), and vertical y ( r )  disturbances. 

Note that if m =+ 0, (13) is satisfied for any value of 7,  and if m = 0 reduces to 

l:"7Fedz = 0. 

System (8)-( 10) with conditions (1 1 )-( 13) defines a homogeneous eigenvalue 
problem for a given equilibrium shape Fe(z).  I ts  solution determines the natural 
frequency spectrum for each azimuthal wavenumber m. 

3. Solution of the problem 

and writing the normal disturbance C(s) as (Gaiian & Barrero 1986) 
Introducing an intrinsic coordinate along the undisturbed equilibrium shape F,, 

5(s)  = 7[ze(s)l sin@e(s), (15) 

where Z,(s) and 0,(s)  are the vertical coordinate and the slope angle of the 
equilibrium shape, respectively (figurc 2), equation (8) is now written in terms of [ ( s )  
as follows (see Appendix A ) :  

where 
m2 

q(s ,m)=Bcos@,+ (dd: 2 ) 2+- si;:@, + WF, sin 0, -- 
FE ' 

We assume 
(a )  The contact line of the meniscus with the solid surfaces is to be fixed: 

c(0) = 0, 5(so) = 0 (bridges), (18) 

[(so) = 0 (drops), (19) 1 [ ( O )  = 0 ifm + 0 

31 = o  i f m = O  
ds s=o 
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m = O  

I C(0) = 0 

m # O  

FIGURE 3. Boundary conditions for bridge and drop deformations. Notice the difference in the 
boundary conditions for symmetric and non-symmetric drop deformation. 

where so is the total length of the equilibrium interface profile. Notice that the drop 
condition a t  s = 0 does not arise from the anchorage (like in the case of liquid 
bridges), but from the nature of the interface motion, symmetric (m = 0) or non- 
symmetric (m + 0 ) ,  (figure 3). (Other anchoring conditions could be defined. In  $5.2 
we present, for comparison with existing results (Myshkis et al. 1987), the case of a 
liquid drop inside a tube with slipping contact line.) 

( b )  The continuity of normal velocities across the int,erface, (12), is now written as 

where iw[ is the Eulerian interface velocity. 
( c )  The constant-volume condition for (m = 0), (15), reduces to 

[ [ ( 8 )  F,(s) ds = 0. 

From the Sturm-Liouville character of (16) with (18)-(ZO), an orthogonal 
functional space 

can be defincd in the interval (0, so). These eigenfunctions are solutions satisfying the 
following Sturm-Liouville problem for any of the eigenvalues I, : 

with conditions (18)-(19). 

a Sturm-Liouville problem : 
The eigenfunctions cz satisfy orthogonality conditions since they are solutions of 

Equation (16) may be expressed as a differential operator applied on the normal 
disturbance [(s) : 

F, ds 
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Now, the Green-function method can be used for this problem to calculate the inverse 
integral operator Y-' which formally yields 

[ =  y-l(pOcp-pi@i). (25) 

This operator can be expressed in terms of the functional space {c;} as (Appendix B) : 

J o  

Taking into account (lo),  kinematic condition (20) may be written as c ( P o @ o ( t ) - P i  ~ ' ( t ) )  c:(t)Fe(t)dt 
W2(l-h2) c c; (8) 

q = l  

= sin 0 e [ ~ - h m ~ ~ / r ] r , , e - ( 1 - h 2 )  cos Oe[q]z-ze, j = i, 0. (27) 

Finally, multiplying both sides of (27) by 

C(S) Fe(s) ds 

and integrating them between 0 and so, one may write the homogeneous boundary 
problem of the Neumann type for the state function @' (Greenspan 1968; Myshkis 
et al. 1987): 

with boundary conditions given by 
(i) a t  the interface: 

q = l ,  ..., co, j = i , o  (29) 
(ii) a t  the solid boundaries : 

nI,Cq+n;q = 0, (30) 
n; and nI, being the components of the outer normal unit vector to the solid 
boundaries of medium j. When m = 0, the constant-volume condition (21) allows a 
particular solution of (28) @ = const., to be calculated. 

Depending on the value of h in (28), the problem has elliptic (A2 < 1)  or hyperbolic 
( A z  > 1)  character (Myshkis et al. 1987). Therefore, since h2 = 4Q2/w2, the frequency 
spectrum is split into two sets: one ( W ~ E  (4Q2, co)) corresponds to oscillation modes 
whose motions consist of surface waves, and the other { W ~ E  (0, 4Q2)), characteristic 
for a rotating liquid, is due to internal waves occurring over the entire volume 
(Greenspan 1968). As general remark, it should be pointed out that the hyperbolic 
spectrum is dense on the interval (0, 2n), while the elliptic one is countable on (2n, 
co) and w,,,+co as m+cO or n+cO. 

The final unknowns of (28) with conditions (30) and (29) are the state function @I 

and the eigenvalue h = 2521~. Nevertheless, @' must be solved a t  the interface using 
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a functional basis different from {c;} since, in general, neither the equilibrium 
interface fits with any coordinate surface (in this case plane or cylindrical surfaces) 
nor are {c:} solutions of (28) a t  the interface. Several methods, each of them using a 
different functional basis to  represent the unique solution P‘ of a particular problem, 
can be applied to  find approximate solutions for equation (28) : 

( a )  Expanding P’ in a sequence of linearly independent functions @:(r, z )  which 
are solutions to (28) with condition (30). In  cylindrical coordinates, the most 
appropriate bases are the cylindrical harmonics, Bessel and circular functions (Ritz 
method). Thereafter, a subsequent numerical approach to P. by its expansion on the 
discrete set of functions { @ t ( r ,  z ) } ~ - ~ , . . . , ~  must be carried out. 

( b )  Using an integral formulation of the boundary problem such as Green’s 
method (which gives rise to the boundary-elements method, or the panel method in 
aerodynamics) or a weighted residual method. The choice of the basis is now closely 
related to the boundary discretization : usually, the basis consists of smooth 
polynomial splines which vanish over all the elements except on the one under 
consideration. However, those methods only apply to  elliptic problems. 

( c )  In  the case of thc hyperbolic regime, the method of characteristics may be an 
alternative to the Ritz method. The boundaries must also be discretized as in ( b ) .  
Nevertheless, a great disadvantage of the method of characteristics is that the 
characteristics surfaces are not known a priori : they are cones whose semi-angle is a 
function of the eigenvalues A = 2Q/w (Greenspan 1968). 

The boundary elements method - although the most appropriate in the case of a 
vessel of complex geometry - requires about 50 times the computing time needed to 
solve the same case by the separation of variables. However, this latter method 
proves able to yield sufficiently accurate results for the influence of the physical and 
main geometrical parameters on the frequency spectra. 

4. Dispersion relation and numerical solution 
Using the method of separation of variables, we search for solutions of @(r,  z )  on 

the basis of cylindrical harmonics. Solutions of (28) satisfying conditions (30) may be 
written as follows: 

m 

# @  = A3,(rm+a3,r-m)+p’w2 C Ai@j(Pkr)%*(,ukz),  (31) 
k-1 

where w and AL are unknown constants which must be determined from the analysis. 
Functionals @i(pk r )  and b*(,uk z ) ,  which hereinafter are to be written @i and %”i for 
brevity, have different forms depending on the problem under consideration. 
Constants pk  and ,uk are related by 

(32) 
and they must be calculated together with a; taking into account conditions (30). 
Depending on the meniscus geometry, one may use a different series expansion (see 
Appendix C). Substituting the appropriate expansion in (29) one arrives at a 
homogeneous system of an infinite number of algebraic equations : 

p3k = pi (  11 -PI): 

1 w2( 1 - A 2 )  [ 5 (A; p o  f$;, -A:  pi CT;, q )  +A;  po s; -A; pi s; 

- ~ ~ { ~ ~ ~ , ~ ~ , ~ - ( i - ~ z ) ~ i , ~ , - ~ ~ ~ ( i - A ) ~ ~  = o ,  j = i , o ;  q =  i , 2  ,..., 

k-1 

(33) 
k = l  
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&i,g = [ B ' , l @  F,ds, 

72 

where 

and 

."; = 2F2 sin (0,) c; ds f" 
f Fr + L X ~  F;" liquid bridges, 

drops, 
0 if m + O  

liquid bridges, 

drops. 

(39) 

In  general, when m = 0, one has 

Moreover, the constant-volume condition (22) results in 
m 

where 

and (44) 

The requirement of the existence of a non-trivial solution for system (33) yields the 
natural frequencies w and the eigenvectors {Ajk}k=o, ,,,, +i,o. 

From the point of view of the numerical resolution, one should search for solutions 
of @ in a discrete generalized Fourier basis {@k(r,  ~ ) } ~ = ~ , ~ , , , , , , , j ,  which represents an 
approach to the actual basis {@k(r, z ) ~ = ~ , ~ , , . , ,  oo. Thus, the infinite series in (33) and (41) 
must be truncated after an appropriate Ni-term. Hence, the N ' + P  + 2 unknowns 

{Ajrk)k=0,l1,.. .  N j ,  j = i ,  0 for m * 0 
and the P + No + 1 unknowns 

{[Ajk]k=l ,._., N j ,  j-i.0, (A:po-Ahpi)) if = 
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constitute a discrete dimension eigenvector for the problem, w being its corresponding 
eigenvalue. Consequently, if m + 0 only the first N i +  1 equations of the system (33) 
(if m = 0, only the first Ni-equations plus (41)) should be taken into account. Finally, 
an approximate dispersion relation is supplied from the vanishing of the determinant 
of the homogeneous finite algebraic system. I n  other words, if system (33) is written 

(45) 
as 

the eigenvalues w are the roots of the function given by the determinant of the 

(46) 
truncated system (45) : 

In general, the function F ( w )  should be written 

[MSk,,(41{41 = 07 

F ( w )  = WSk,g(w)L 

1 (47) 
J 

F = F ( w ,  m, n,NI,NO, W ,  B, polpi, V ,  R,, R,, H , )  
F = F ( w ,  m, n,NI,NO, W ,  B ,  polpi, V ,  H,,  HI, H , )  

floating zones 
captive drops 

but, the sake of brevity, we shall simply write F ( w ) .  
For accuracy, if one is considering the N first natural frequencies of the spectrum, 

Ni should in general be much greater than N .  A numerical analysis of the convergence 
and sensibility of the number N can be found in Gaiian & Barrero (1990) for Q = 0. 
As a general remark, for most cases we have found the convergence to be very fast 
within the limits of application of the method. IfNi > 5 ,  the typical error for the first 
frequency is of 0(0.1%). However, in the case of axisymmetric modes of liquid 
bridges, a number of retained terms Ni > 10 is required for the same accuracy. I n  the 
following section we outline how the rotation affects the convergence. On the other 
hand, in the presence of rotation ( A  + 0) the solution of the dispersion relation cannot 
be done by standard methods as in the case of h = 0 (Gafian & Barrero 1990). Thus, 
trial-and-error or bisection methods should be used with the aid of a Newton- 
Raphson method in the neighbourhood of the eigenvalue that we are seeking. 

5. Numerical results 
In  the following, we will present the results of the numerical analysis corresponding 

to h + O  (with rotation). The influence of gravity, density of the fluids and 
geometrical parameters for the case h = 0 have been considered elsewhere (Gafian & 
Barrero 1990). 

To analyse the role that rotation plays in the natural frequency spectra of captive 
drops, in the following we will discuss a set of examples corresponding to  selected 
combinations of density ratios and geometrical parameters for continuous ranges of 
Bond and Weber numbers. Although the character of equation (28) does not put a 
limit on the generality of equations (33) and (41), from the point of view of their 
numerical solution in the hyperbolic regime, it has to be pointed out that  the 
hyperbolic frequency spectrum is dense over (0, 2Q) (Myshkis et al. 1987). This is 
manifested by the fact that in the interval w E (0, 2Q) the oscillating character of the 
function F(w)  in (47) increases (the number of roots increases) and its amplitude 
decreases as the number of retained terms N j  in the series increases. We have 
numerically found that P ( w )  uniformly tends to  zero in the interval W E  (0, 2Q) as 
Ni +a. Consequently, the convergcncc cannot be improved by increasing N3 because 
the difference between the value of a certain root for certain @ and the value 
for@ + 1 becomes of the same order as the distance between two roots of F ( 0 ) .  In  this 
case it is useful to define the eigenvalues of the problem as the inverse of the 
oscillation frequencies (Greenspan 1968). 

However, the inviscid assumption becomes invalid for very slow oscillations 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
w4 

FIGURE 4. First two frequencies for m = 0 and m = f 1 versus the Weber number W of a liquid 
bridge between equal disks, slenderness H, = 2.5, volume V = 2.%, Bond number B = I ,  and 
surrounded by an outer medium of density p" = 0.35, for different values of the vessel radius R,. 

(hyperbolic regime) and the physical application of the model is less plausible. For 
that reason we have restricted our analysis to finding the frequencies and oscillation 
modes of surface waves (elliptic regime). This study is equivalent to analysing the 
roots of the function (47). In what follows we describe in detail the structure of the 
roots of (47) for a few values of the vector ( V ,  R,, R,,po/pi ,  H,,) and the first and 
second wavenumbers in order to illustrate the power of the present method. Further 
analytical effort would be required to define a proper solution scheme to  determine 
the hyperbolic spectrum. 

5.1. Bridges or Jloating zones 

Figure 4 shows the first and second frequencies of the axisymmetric (m = 0) and 
asymmetric (rn = 1 ,  m = - 1) modes of a liquid bridge between two equal-diameter 
disks, of slenderness H ,  = 2.5, volume V =  2.%, Bond number B = 1,  and 
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FIGURE 5. Surface deformation and velocity fields for (a) the first and (b  the second oscillation 
modes for m = - 1 for the liquid bridge of figure 4, for (i) J@ = 0.3, (ii) d = 0.65, ( i i i )  ry'p = 0.75, 
and (iv) d = 0.8. 
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surrounded by an outer fluid of density po = 0.35, for different values of the vessel 
radius R,. The vertical dashed-dot line represents the maximum Weber number (or 
the stability limit) for this particular bridge. It should be stressed that the 
equilibrium problem (i.e. the equilibrium shape) has to be solved for each W. In  the 
case of this particular bridge, the limit is first reached by an asymmetric forward 
mode (m = 1) .  The character of the stability limit depends on the values of H,,  R,, 
and V (Vega &, Perales 1983). 

The sloping dashed-dot line is the interface between the elliptic (w2 > 4W/(pi-p0)) 
and the hyperbolic (w2 < 4W/(p'-p0)) regions. In the elliptic region, one may 
observe the splitting of frequencies corresponding to the forward (m = 1 )  and 
backward (m = - 1 )  modes, while both have the same value for non-rotating menisci. 
Furthcrmore, the frequency of the first mode decreases for rn = 1,  and increases for 
m = - 1 as W increases. Indeed, this effect is a characteristic of the first modes m = 

1 and m = - 1 for all captive menisci, as will be shown in our results. This led Myshkis 
et al. to outline as a general characteristic that < w-m,n (Myshkis et al. 1987, pp. 
329-330), which in general is not correct, as will be shown for the case of pi < po and 
m = + 2 .  On the other hand, the first and second frequency of the axisymmetric 
(m = 0) modes increase as W increases until one of them reaches either the straight 
line w = 2Q or the stability limit. 

One of the most interesting features discovered for the elliptic spectrum is that, for 
a certain azimuthal wavenumber m, and increasing rotsation speed, two different 
modes eventually collapse to a single one. Above the value of the rotation speed for 
which this happens, both disappear from the elliptic spectrum (see figure 4 for the 
first and second m = - 1 modes and R2 < 1.5). 

This phenomenon is described in figure 5 (a ,  b )  where the surface deformation and 
velocity fields corresponding to the first and second backward modes m = - 1 for 
W i  = 0.3, 0.65, 0.75, and 0.8, and R, = 1.5 are represented. The right-hand part of 
eachgraph shows the instant of minimum amplitude ofthe interface motion (maximum 
amplitude of the velocity), and the left-hand part shows the interface a t  a time x/2w 
later. As a consequence of the ideal liquid approximation, observe that through the 
interface the tangential velocity is not conserved. This analysis is equivalent to 
considering the interface as a thin film of thickness 

s - (u2pE;rT-l):  < Eo,  
disregarding small shear stresses inside this film, which are responsible for the 
continuity of the velocity vectors through the interface. 

For W ranging from W i  = 0 to - 0.65 (see figure 5 a ,  b ) ,  there are no other nodes 
on the interface profile apart from the upper and lower contact line. However, for 
values larger than Wi N 0.65 a new node appears and moves from the upper contact 
line downwards along the profile as W is increased. Both interface deformation and 
velocity fields for the m = - 1 n = 1 mode become very similar to  those for the next 
mode (m = - I ,  n = 2 ) .  On the other hand, the m = - 1 .  n = 2 mode changes only 
slightly as W increases (see figure 5 for W i  = 0.75 and 0.8). We have found that the 
radius R, of the cylindrical container determines the occurrence of this phenomenon 
in such a manner that it does not take place for values of R, larger than - 1.84 for 
this particular liquid bridge. Figure 6 shows how the first backwards mode is 
modified for this bridge when R, increases from 1.5 to 2 ( W  = 0.8) .  Similar behaviour 
may be observed for most of the capillary menisci under rotation as a rigid body 
inside a cylindrical container. 

Figure 7 represents the first axisymmetric, and the first and second asymmetric 
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FIGURE 6. Surface deformation and velocity fields for the first backwards mode (m = - 1, n = 1) of 
the same liquid bridge of figures 4 and 5 for W = 0.8: (a) R, = 1.5, (a) R, = 2. 

I W(+ 
FIGURE 7. First frequency for m = 0, and first two frequencies for m = 1 versus the Weber 
number W ,  for different values of R, of a liquid bridge with the same parameters as figure 4 except 
that p" = 0.65. 
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( n  = 1,2,  m = - 1 , l )  frequencies of a liquid bridge with the same volume V ,  height H, ,  
and upper radius R, as in the former case (see figure 4), but in the present case the 
inner density (pi = 0.35) is lower than the outer one (the meniscus acts as a 'bubble'). 
Here, the effect of rotation is to stabilize the meniscus. All the oscillation frequencies, 
except that corresponding to the m = 1,  n = 1 mode, increase as ITVl increases. I n  this 
case, note that frequencies q 1  not only increase with IWl, but also wl,, > w ~ , , , ,  
which refutes the general conclusion drawn by Myshkis et al. from their partial 
results (a meniscus inside a tube: they drew as a general conclusion (pp. 329-330) 
that for the surface waves, wbackward > uforward (> 252)). Moreover, when pi < p", no 
stability limit is reached for any real value of IWl ,  and the elliptic spectrum appears 
the same as the one in figure 4 for R, < 1.5, but in the present case the collapse of 
modes m = - 1,  n = 1 and m = - 1,  n = 2 takes place for any value of R,. Figure 
8 (a ,  6 )  shows the velocity fields and interface deformations corresponding to  the first 
and second backward modes (m = - 1) of this liquid bridge, R, = 1.5, and different 
values of the Weber number. Note the similarity between the first and second modes 
as IWI approaches IW*li - 0.66. 

From the numerical point of view, the convergence is excellent in the case m = f 1. 
For N = 3, an error E = [ ( w ( N ) - w ( N - l ) ) / o ( N ) ]  x 100 = 0.2% can be achieved for 
the first and second frequencies (n = 1,  n = 2), decreasing to E = 0.005% for N = 9. 
As suggested in Appendix C, this convergence improves as W increases. Nevertheless, 
the same accuracy for the axisymmetric case m = 0 requires N = 7 and N = 20 terms 
in the series, respectively. This may be caused by the existence of a solution @ = 
const., which in the present method is expanded in series, causing a deterioration in 
the convergence. 

5.2. Captive drops or bubbles 

The influence of rotation on the asymmetric oscillations m = 1 and m = - 1 of a non- 
surrounded captive drop in the absence of gravity and in contact with a circular flat 
support (disk) is analysed. The contact line is fixed at the edge of the disk. If  the 
frequencies w,, ,  and w - ~ , ~ ,  and the rotation speed 52 (which is INl; in this case) are 
normalized with the frequency of the same drop in the absence of rotation u:, ,, one 
finds that all the curves W * ~ , ~ ( S Z )  collapse for values of the drop volume ranging from 
I' x 0.4 to x 50. In figure 9 we show the resulting universal plot of the first 
frequencies u*171/w:s versus the rotation speed 52/w:,,, where I& is the first 
transverse frequency of the drop in the absence of rotation. The following general 
formula may be derived for the first frequency m = 1 and m = - 1 of a rotating liquid 
captive drop with B = 0 :  

This result was found using about 6-7 eigenfunctions. All the computed frequencies 
lay on a single line within an error +0.5%. 

The influence on the oscillations of a captive drop of both the isorotational and the 
gravitational fields has been analysed in the case of V = 2.3. Figure 10 shows the first 
frequency of the axisymmetric modes m = 0 for different values of the Bond number 
B. The dashed-dot represents the stability limit (due to the first non-symmetric 
m = 1 mode). Observe that, although the oscillation frequency decreases when B 
increases, the stabilization effect due to rotation increases (the slope of the curve 
w(52) increases). On the other hand, the slope of q,, tends to  0 when 52 + 0. Note that 

W k 1 . 1  = 4 1 , l T Q .  (48) 

FIGURE 8. Velocity and deformation fields for (a) the first an$ ( b )  the secong oscillation modes ,for 
m = - 1 for the liquid bridge of figure 7 for ( i )  W = 0, (ii) IWl' = 0.3, (iii) lwi = 0.5, and (iv) l w r  = 
0.65. 
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FIGURE 9. First frequency for m = 1 and m = - 1 of a captive rotating liquid drop with B = 0 and 
po = 0, versus the rotation speed Q. Results are given in general form by scaling the graphics with 
the first oscillation frequency m = 1 of the drop for a = 0. 
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FIGURE 10. First frequency for m = 0 of a non-surrounded liquid drop of volume V = 2.3, for 
different values of the Bond number B. The stability limit is represented as a dashed-dot line. For 
this volume, the stability limit is reached by the axisymmetric mode m = 0. 
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4 

11) 

FIOIJKR 11. First frequencies for m = 1 and m = - 1 of the drop in figure 10 versus the Bond number 
B and rotation speed 52 (52 = & because p” = 0). The transition to the hyperbolic regime is 
represented by dashed lines, and the stability limit w , , ~  = 0 is given by dot-dashed lines. 

the equilibrium shape given by (A 1)-(A 3) (see Appendix A), the interface 
perturbation <: from (17), and the velocity fields expressed in (C 9)-(C 16) (see 
Appendix C )  are functions of O2 when m = 0. 

In  figure 11 the non-symmetric m = 1 and m = - 1 modes of the same drop are 
represented as a function of both B and W (W = SZ in this case). It is of interest to 
notice that for low and negative Bond numbers, the lower value of the Weber number 
given by the stability criterion corresponds to the first m = 1 mode, and for positive 
higher values of B (B > 1.78), it corresponds to the first axisymmetric m = 0 mode. 
For a given B, the stabilization effect due to rotation can be qualitatively estimated 
from the slope of the curve W,,~ (O) .  

The physical explanation of this phenomenon is not difficult if one keeps in mind 
the distortion of the equilibrium shape due to the Bond number (concentrating the 
liquid around the z-axis when positive, and allowing i t  to spread when negative) and 
the Weber number (pushing mass away from the z-axis when positive, or the opposite 
when negative). When both effects contribute to spread the liquid away from the axis 
of rotation, the most ‘dangerous’ mode of oscillation (the one which determines the 
stability limit) is the non-symmetric m = 1 case. If a characteristic radius R* is 
defined from the drop volume R* = (3V/47c)f, one has that the ‘flatter’ the drop, that 
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FIGURE 12. First and second frequencies m = 1 and m = - 1 for the meniscus described in Myshkis 
et al. (1987, p. 378) for a = 60°, versus the rotation speed 52. The results of Myshkis et al. are 
extended over larger values of 52 and the same phenomena as in liquid bridge are found for the first 
and second m = - 1 modes. 

is, the smaller R*, the more dangerous (the more unstable) the m = 1 mode becomes. 
If the drop is flat enough, the most unstable mode, even in the absence of rotation, 
is m = 1 whatever the value of B.  Nevertheless, the effect of gravity is the opposite, 
stretching the drop along the z-axis when it is voluminous and, therefore, the 
dangerous mode depends on the value of R* (for a thorough review of the equilibrium 
and stability of axisymmetric drops, see Myshkis et al. 1987). 

Figure 12 shows the first and second frequencies m = 1 and m = - 1 of the 
meniscus described in Myshkis et al. (pp. 378) for a = 60°, versus the rotation speed 
52. It should be noticed that there is now a slip condition in the contact line. Thus, 
the boundary condition for the perturbation of the interface becomes 

Here, we have extended the results of Myshkis et al. over larger values of D and we 
have found for the first and second modes m = - 1 the same phenomenon as in liquid 
bridges : both modes suddenly become a single one for a certain value of the rotation 
speed Q*, and then both disappear for larger values of 52. The excellent fit between 
Myshkis et al.’s results and ours is to be expected since we have both used the 
separation of variables method to solve the problem. 

Finally, in the case of drops inside a tube, the numerical integration schemes 
should be refined in order to ensure convergence and accuracy of the results. Owing 
to the exponential functions that appear in (31) (also see Appendix C), the larger the 
rotation parameter A,  the more difficult the convergence becomes as the number of 
eigenfunctions needed increases. 
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6. Summary and discussion of the results 
An analytical spectral method to  determine the natural frequencies and the 

corresponding normal modes of inviscid liquid captive drops or bubbles (pendant or 
sessile drops, and liquid bridges), surrounded by an outer liquid or gas, under the 
influence of both gravitational and isorotational fields, has been developed. The 
method uses a small-disturbance approach and the normal mode decomposition to 
linearize and reduce the inviscid Navier-Stokes equations and boundary conditions 
to an eigcnvalue problem. The solution of the second-order differential equation of 
the interface motion is expressed using the Green function method. Both the Green 
function and normal velocities a t  the interface are expanded in the orthogonal 
functional space generated by the Sturm-Liouville problem associated with the 
homogeneous part of the interface equation. The analysis is then reduced to three 
sets of an infinite number of algebraic equations that are numerically solved using 
appropriate truncation. 

We report numerical results taking into account the influence of rotation on the 
small oscillations of liquid captive drops. In  agreement with the study of Myshkis 
et al. (1987), the current study shows that the frequency spectrum {w,,,} is split into 
two sets corresponding to the elliptic (w > 252) and the hyperbolic (w < 252) regimes. 
The structure of the elliptic frequency spectrum as a function of the Weber number 
for some liquid bridges and drops has been described in detail for low azimuthal 
(m = 0, f 1 )  and meridional (n = 0, 1 ,2 )  wavenumbers. 

For liquid bridges, some general results can be summarized as follows: 
( a )  Oscillation frequencies decrease as the radius R,  of the vessel that contains the 

liquid bridge and the outer liquid decreases. 
( b )  When pi < po and B + 0, a collapse of the first and second (n = 1 and n = 2) 

backward modes m = - 1 occurs for certain value W* of the Weber number, which 
depends on R,. Both modes disappear from the elliptic spectrum for IWI > IW*l. 

(c) When pi > po, three different scenarios are found: (i) for R, < R t ,  where RZ is 
a certain limiting value of the vessel radius that can be numerically found, the 
collapse of the first and second backward (m = - 1 )  modes takes place for a value of 
W which depends on R,. (ii) The bridge reaches its stability limit before the collapse 
takes place (R, > R t ) .  (iii) The curve U - ~ , ~ ( ~ W ~ ~ )  ends up on the line w2 = 4W/(pi-PO), 
which establishes the limit between the elliptic and the hyperbolic spectra (R, > R t ) .  

For captive drops, the following conclusions may be outlined: 
( a )  For non-surrounded rotating liquid captive drops supported in a disk of radius 

R, = 1,  in the absence of rotation, there is a general relation for the frequencies of the 
first forward and backward modes (m = 1 )  : 

w*l , l (Q)  = 4 , I T Q  
where u:,~ is the frequency of the same drop in the absence of rotation. 

( b )  When the inner region of the meniscus is occupied by a fluid which is less dense 
than the one that fills the rest of the space, the same phenomenon described for liquid 
bridges occurs, i.e. the collapse of the first and second backward modes. For the 
opposite density ratio between the inner and outer fluid, the phenomenon may take 
place if the stability limit is not reached first. 

In general, the isorotational field was found to stabilize the meniscus when pi < po. 
However, when pi > po this effect may reverse depending on the geometry of the 
meniscus, the Bond number and the oscillation mode under consideration. The 
examples analysed in $5 for both liquid bridges and drops illustrate the influence of 
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the Bond and Weber numbers, boundary conditions and densities of both inner and 
outer fluids. Furthermore, the oscillation modes corresponding to the lower 
wavenumbers are the most affected by the isorotational field because the 
characteristic times of rotation and oscillation are of the same order, which means 
that the oscillation frequencies and corresponding modes are less affected by rotation 
for large wavenumbers m and n. Finally, the convergence of the method when using 
separation of variables in cylindrical coordinates, which was shown in Gaiiin & 
Barrero (1990) in the absence of rotation, is improved with rotation in the case of 
liquid bridges (see Appendix C). In this case, the convergence limits depend on the 
Bond number, the volume V and the slenderness H,. However, for captive drops the 
convergence deteriorates as SZ increases, and the limits of convergence depend 
strongly on the rotation speed. 

Further insight is required on the properties of the hyperbolic spectrum in order 
to complete the description of the small oscillations of captive rotating liquid drops 
and bubbles. 

This work, partially supported by the Consejeria de Educacidn de la Junta de 
Andalucia, has been conducted at the Universidad de Sevilla, Spain, in partial 
fulfilment of the requirements for my doctoral degree. I am particularly indebted to 
Professor Barrero from the Universidad de Sevilla (Spain) for his encouragement, 
advice, criticism and support throughout this work. It is also a pleasure to thank 
Professor Lasheras from the University of California, San Diego for all his helpful 
suggestions. 

Appendix A 

equilibrium coordinates r = F,(s) and z = Z,(s) are given by 
In terms of the s-coordinate and the slope angle of the equilibrium profile @,, the 

and 

Taking into account that 

1 + F zz = sin-2 0,. 

and 

and 

ds 
-[ d Fey,  ] = L~(F, 
dz ( I + F : ~ ) :  sin@,ds 

cos 0, sin 

introducing expressions (A 4), (A 5 ) ,  (A 6), and (A 7 )  into (8), one arrives a t  

d27 d 0  dy dll -sin@,+2 cos 0 , A - + s i n  0, cos 0,F;'- 
ds2 ds ds ds 

+ y ( l - m 2 ) F ; 2  sin f?),+WF,q = P O @ O - P ~ @ ~ .  (A 8) 
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and substituting it into (A 8) we obtain (16). 
It is of interest to notice that (8) may also be written in terms of the r-coordinate 

and yields (16) again when it is written on the s-coordinate along the drop profile. If 
we specify the interface position in the formf(r,y, z ,  t )  = Z(r,cpj t )  - z ,  we can write the 
perturbations as 

m a  
Z ( r , y ,  t )  = Z,(z) + c c ym, n ( ~ )  ei(mp-wm*nt). (A 10) 

m=o n-1 

The second-order problem on the r-coordinate is given by 

where subscript r stands for the r-derivative ; the boundary conditions are 
( a )  bridges 

( b )  drops 
y ( 0 )  = 0, y ( l )  = 0; (A 12) 

y(&) = 0, dy/dsl,-o = 0, (A 13) 

y ( 0 )  = 0, y ( 1 )  = 0, (A 14) 

for the axisymmetric mode (m = O), or 

for non-symmetric modes (m > 0). 
The volume condition reads 

/ r l . y ( r )  dr  = 0. 

A similar manipulation of (A 11) yields 

-cos d2Y @,+(F;' cos2 0 , - 2  sin @,)-+y(B-m2E';2 dY cos 0,) =p'@'-p0@O. 
dS2 ds 

Writing the normal interface perturbation as 
(A 16) 

(A 17)  C(S) = -Y(Fe(s))  cos @ e ( s ) ,  

and substituting into (A 16), we again obtain (16). 

Appendix B 
The Green function for this problem satisfies the equation : 

i d  
Fe ds 

6(s- 6) being the Dirac function. From classical functional analysis, the Green 
function may be expanded in series of suitably chosen orthogonal functions (Butkov 
1968). Thus, using the defined c:(s) space we get 
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(B 3) 
C:(tJ Fe(5) 

lq  c::q*(s)2Fe(s) ds' 
where Y g ( t )  = 

0 

by introducing expression (B 2) and the expansion of the Dirac function given by 

6 b - U  = q;l E e:(t)Fe(t) c:(s, (B 4) 
c:2(s')Fe(s') ds' 

into (B 1 ) .  The solution (16)-(19) may thus be expressed using the Green function as 
follows : 

~ ( 8 )  = [G(. I t)  ( P o @ o ( t ) - P i @ i ( t ) ) ~ e ( t ) d ~  

Appendix C 
We use different expansions depending on the meniscus geometry : 
(a) Bridges (elliptic regime: A2 < 1 ) :  

W 

@(r,z) '  =A{ ( rm+a{ '? -m)+  A ~ ( a ~ K m ( P k r ) f I r n ( P k r ) )  CoS ( P k z ) ,  (c 1) 
k-1 

where I m  and K ,  are the modified Bessel functions of the first and second kind, 
P k  = k.rc/Ho (from conditions w(r,  0) = 0, w(r ,  H,) = 0) ,  and ai are for the inner fluid: 

a i=O,  k = 0 , 1 , 2  ,... (C 2)  

because ~ ' ( 0 ,  z )  += co ; and for the outer fluid : 

m(l  + A )  

m(1-A) 

P k I m + l ( P k  R 2 )  + R, I r n ( P k  R 2 )  

P k  K?n+l(Pk ' 2 ) -  ~2 K f n ( b k  R2) 

a; = , k = 1 ,2 ,  ... (C 4) 

because uo(R2, z )  = 0. 
( b )  Bridges (hyperbolic regime: A2 > 1 ) :  

W 

@(r,z)' =A{( rm+a{T-m)+  Ai(OLiYm(Pkr)+Jm(Pkr)) COS ( P k Z ) ,  (c 5 )  
k-1 

where Jm and Y, are the Bessel functions of the first and second kind, and ui are for 
the inner fluid: 

(C 6)  a;=o ,  k = 0 , 1 ,  ... 
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because u'(0, z )  + co : and for the outer fluid: 

a; = 0, m = 0 , )  

m(1 + A )  
P k  Jm+l(PkR2)-  p Jm(Pk R 2 )  

1 ' 2  a; = 
m(1-A) , 

P k  'm+l(PkR2)- R, 'm(Pk R 2 )  

because u0(R2, z )  = 0. 
( c )  Drops (elliptic regime : A2 < I ) :  

where A; = 0 if m $. 0 ; Pk is calculated from 

and ai is 

(d) Drops (hyperbolic regime: h2 > 1): 
m 

@ ( r ,  2)' = A { +  Ai  Jm(Pkr)  cos ( ,uk(z-H')) 
k-1 

( e )  Non-surrounded drops: note that in the above expansions 

F&) < Ro 

is assumed for SE (0, so) (see figure 2). These expressions may not be appropriate for 
geometrical drop configurations where F,(z) > 1 (see figure 1(c). I n  these cases, for 
non-surrounded drops, it is convenient to take the following expansions : 

02 

@ ( r , z )  = A o r m +  2 A k l m ( P k r ) ( A  cospk~+Bsin ,ukz)  (C 14) 
k = l  

for the elliptic regime, and 

for the hyperbolic one, where 

(C 16) i knRo 
A =  1, B = 0 ,  &=- k odd, 

A = 0 ,  B = l ,  pic= (k+1)7cRo k even. 

2Ho 

2HO 

In the case of drops surrounded by an outer medium, and F,(z) > 1 a t  some point 
of the interface, we found that it is convenient to  expand the velocity and pressure 
fields in terms of spherical harmonics (Strani & Sabetta 1984). 
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It is worth mentioning that the use of separation of variables leads to analytical 
functions which reach very large values within the domains ~ exponential and 
modified Bessel functions in the case of the elliptic regime. That represents a 
difficulty compared to the numerical computation of the series since these functions 
should be evaluated a t  the interface, which in general does not lie on a coordinate 
surface. Despite this, the method has adequate convergence in the range of interest 
of our analysis. In  the elliptic regime, for liquid bridges, the convergence of the 
method proves to be faster for w =+= 0 (see (33) and (34)). To understand this, we may 
consider a new coordinate 

r* = r(l1 -h21)f, 

where h < 1. Obviously the exponential functions in r decrease, and the convergence 
is improved. 

Nevertheless, the convergence is slower when the coordinate appearing in the 
exponential-type function is z (see (42) and (46)) ; a new coordinate 

z z* = 
(Il-h21): 

may be considered in this case, representing a ‘stretching’ of the vertical one. This 
makes the solution by separation of variables in cylindrical coordinates in the case 
of drops inside a tube impossible for aspect ratios larger t,han a critical one, H,*, which 
depends on the Weber number. 
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